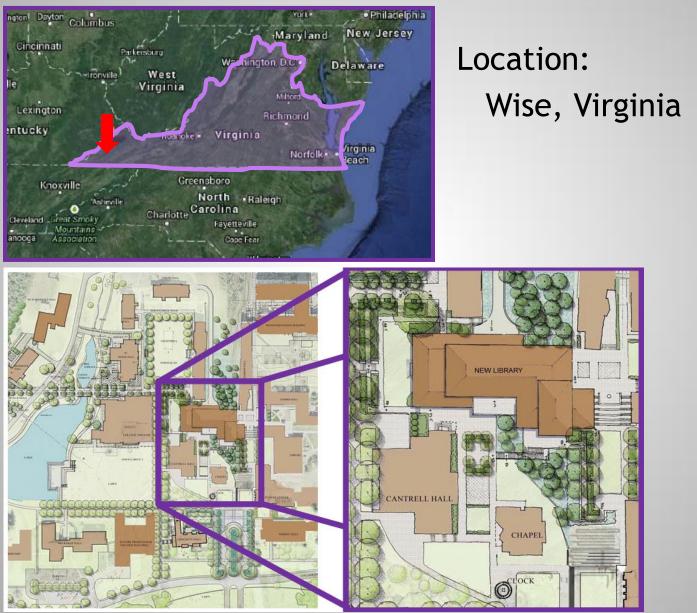
Technical Report 3


Existing System Spot Checks /Alternate Systems Study

Macenzie Ceglar Structural Option Advisor: Heather Sustersic

University of Virginia's College at Wise -New Library-

Site Plan and Location

General Building Description

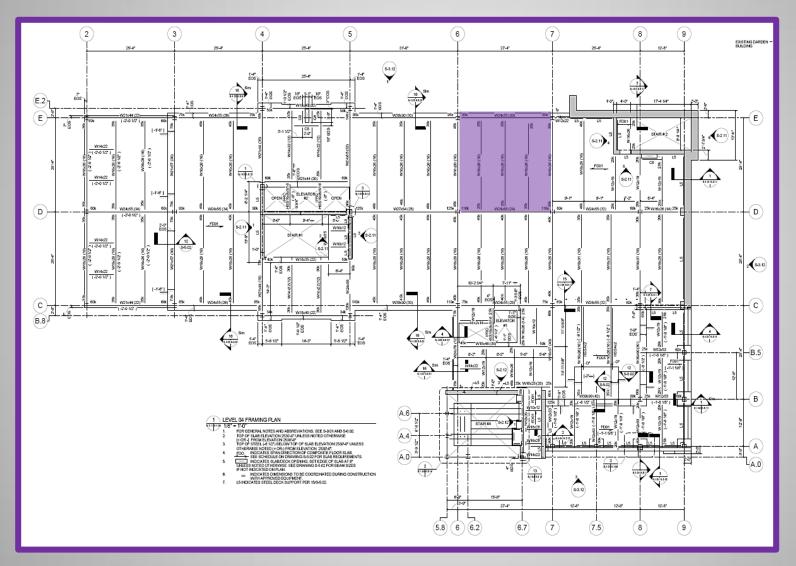
- Owner: University of Virginia' College at Wise
- Location: Wise, VA
- Number of Stories: 6
- Size: 68,000 GSF
- Construction: Aug. 2012 Aug. 2015
- Structural Engineer and Architect: Cannon Design

• Unique Feature: Built into 60FT hillside

Existing Structural System

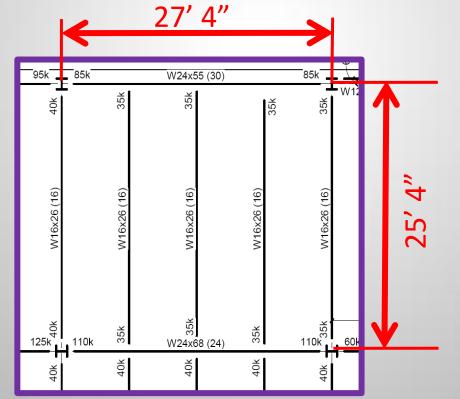
Steel Framing

- Composite Metal Deck
- Composite Steel Wide Flange Beams and Girders
- Steel Wide Flange Columns


• Lateral System

Ordinary Reinforced Concrete Shear Walls

Soil Retention System


Temporary Leave in Place Soil Retention SystemFoundation Walls

Typical Bay

Typical Bay

- 6 ¹/₂" Composite Deck
- W16x26 Composite Beams
- W24x68 & W24x55 Composite Girders
- W12 Columns

Gravity Spot Checks

Decking

SDI Max - May be unshored for 3+ span condition

Deflection

>95psf < 400psf → PASSED</p>

Beams

- Strength
 - > 304ft-k >135.9ft-k

 \rightarrow PASSED!

- Wet Concrete Deflection
 - > 0.528" < 1.267" → PASSED!</p>
- Live Load Deflections
 0.210"< 0.844"

→ PASSED!

Gravity Spot Checks

Girders

Strength

> 1060ft-k > 587.6ft-k \rightarrow PASSED!

- Wet Concrete Deflection
 - ▶ 0.435" < 1.367" → PASSED!</p>
- Live Load Deflections
 - > 0.229" < 0.911" → PASSED!</p>

Gravity Spot Checks

Columns

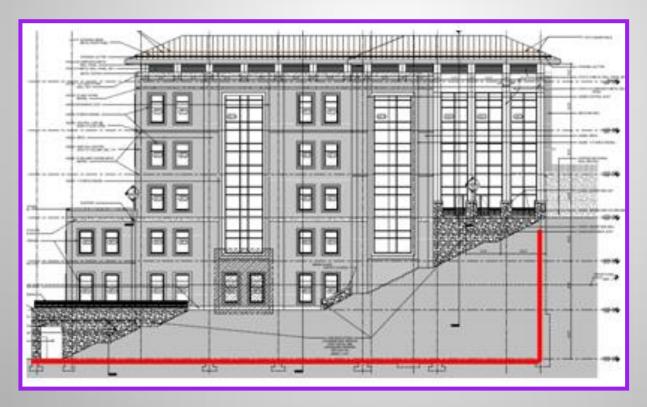
Interior - Strength

> 1620ft-k > 1041.2ft-k \rightarrow PASSED!

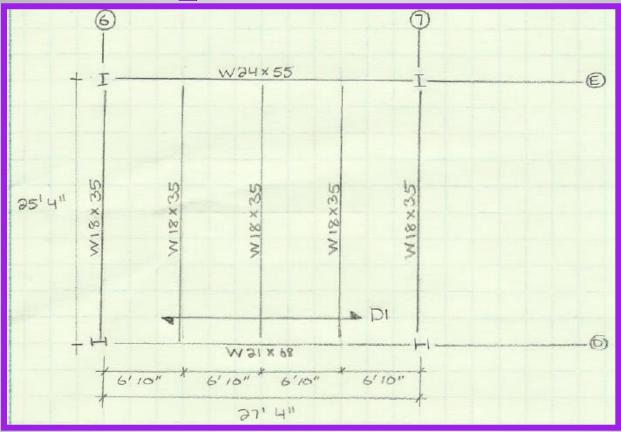
Exterior - Strength
 640ft-k < 478.2ft-k

→ PASSED!

• Note:


 Existing system gravity checked done using 80PSF office loading, but also passes using 150 PSF general collections loading.

Alternate Floor Systems


- High live loading due to general collections was important in picking alternate systems
- 1. Non-Composite Steel \rightarrow Plausible
- 2. One-Way Slab with Beam \rightarrow Plausible
- 3. Two-Way Slab with Drop Panels \rightarrow Plausible
- 4. Steel Joists \rightarrow NOT Plausible
- 5. Wood Framing \rightarrow NOT Plausible

Considerations

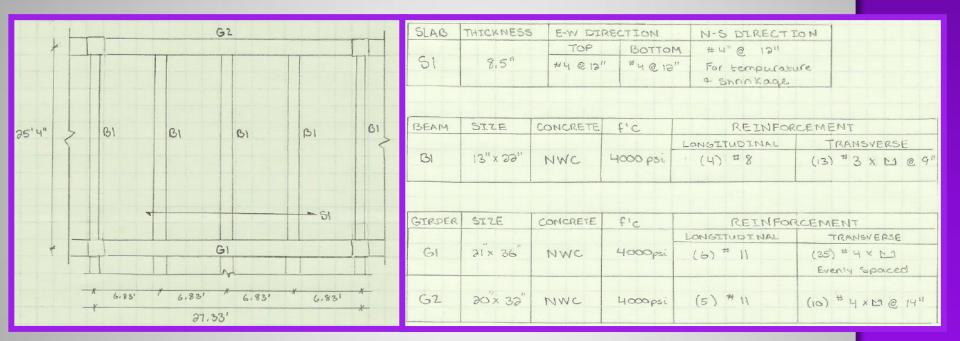
- No restriction of floor-to-floor heights
- Concrete shear walls aid in foundation system
- Limit column size

Non-Composite Steel

Notes

- > Existing framing layout used
- D1: 6 ½" NWC Composite Deck (4 ½" Slab)
- ≻ f'c = 4000 psi

Non-Composite Steel


- Cost: Increased
 - > \$28.74/SF < \$22.05/SF
- Weight: Increased
 - > 80.3 PSF > 78.6 PSF
- Depth: No Change
 - > 30.5" = 30.5"

- Lateral Systems
 Concrete Shear Walls
- Fire Protection
 - > Additional Fire Proofing Required
 - > 2hr fire rating provided by 4.5" NWC
- Durability
 - Acceptable

CONCLUSION

- Pros: Average Depth
- Cons: Increase cost and weight, fire proof required, vibration concerns
 - → NOT PLAUSIBLE!

One-Way Slab with Beams

Notes

- Existing framing layout used
- ≻ f'c = 4000 psi
- > Fy = F_{yt} = 60,000 psi
- > NWC

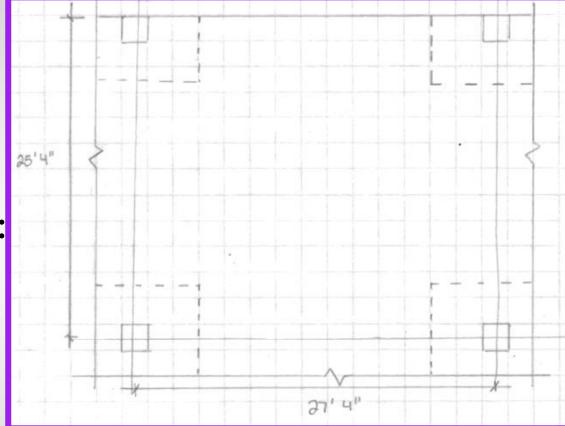
One-Way Slab with Beams

• Cost: Decreased

- > \$17.23/SF < \$22.05/SF
- Weight: Increased
 - > 218.2 PSF > 78.6 PSF
- Depth: Increased
 - > 36" > 30.5"

- Lateral Systems
 - Concrete Shear Walls
 - Concrete Moment Frames

• Fire Protection


- > No additional fire proofing required
- > 2hr fire rating provided by 8.5" NWC
- Durability
 Acceptable

CONCLUSION

- Pros: Decreased cost per SF, no additional fire proofing required
- Cons: Increase weight and depth
 - → REDESIGN PLAUSIBLE

Two-Way Slab with Drop Panels

- 10" Slab
- 3" Drop Panels
- Interior Drop Panels:
 - 117" x 102"
- Exterior Drop Panels:
 - 117" x 63"

- Notes
 - ≻ f'c = 4000 psi
 - ➢ Fy = F_{yt} = 60,000 psi
 - > NWC

Two-Way Slab with Drop Panels

Decreased Cost

> \$14.93/SF < \$22.05/SF

Increased Weight

> 185.2 PSF > 78.6 PSF

• Decreased Depth

> 13" < 30.5"

Lateral Systems

Concrete Shear Walls

Concrete Moment Frames

• Fire Protection

No additional fire proofing required
2hr fire rating provided by 10" Slab

• Durability

Acceptable

CONCLUSION

Pros: Decreased cost and depth, no additional fire proofing required, decreased cost per SF

Cons: Increased weight

→ REDESIGN PLAUSIBLE!

Final Comparison

	Floor System Designs			
Criteria	Composite Steel	Non-composite Steel	One-Way Slab with Beams	Two-Way Slab with Drop Panels
System Statistics				
Cost	\$22.05/SF	\$28.74/SF	\$17.23/SF	\$14.90/SF
Weight	78.6 PSF	80.3 PSF	218.2 PSF	185.2 PSF
Architectural				
Maximum Depth	30.5"	30.5"	36"	13"
Additional Fire Proofing Required	YES	YES	NO	NO
Fire Rating	2 HR	2 HR	2 HR	2 HR
Servicability				
Vibrations	Likely	Likley	Minimal	Minimal
Future Considerations				
Lateral Systems			Concrete Shear Wall, Concrete	Concrete Shear Wall, Concrete
	Concrete Shear Wall	Concrete Shear Wall	Moment Frame	Moment Frame
Durability	Acceptible	Acceptible	Acceptible	Acceptible
Feasable for Redesing	N/A	NO	YES	YES

Thank You! Any Questions?

